Radiocaesium in terrestrial and aquatic environments: analogues for Fukushima

Susie Hardie, Gus MacKenzie, David Sanderson & Ian McKinley

Introduction

- The damage to Fukushima Dai-ichi by the Great Tohoku earthquake and tsunami resulted in considerable contamination: After decay of shorter-lived isotopes, offsite concerns mainly involve radiocaesium isotopes (-134 & -137)
- Here there is a huge international knowledge base on the environmental behaviour of radiocaesium accumulated as a result of releases over the last half century
- The SUERC / MCM team have worked in every relevant aspect of this topic, accumulating international, state-ofthe-art experience over more than 3 decades

Relevant international "analogues"

- "Although not widely recognised, there are many situations worldwide that provide valuable experience which can contribute towards planning and implementing Fukushima remediation
- Major reactor incidents
- Problematic spent fuel ponds
- Other major releases of radioactivity
- Contamination from past radioactive waste disposal activities
 - Releases to land and groundwater
 - Releases to coastal marine environments

Previous reactor incidents

Reactor	Date	Immediate deaths	Environmental effect	Follow-up action
NRX, Canada (experimental, 40 MWt)	1952	Nil	Nil	Repaired (new core), closed 1992
Windscale-1, UK (military plutonium-producing pile)	1957	Nil	Widespread contamination. Farms affected (ca. 1.5 × 10 ¹⁵ Bq released)	Entombed (filled with concrete); being demolished.
SL-1, USA (experimental, military, 3 MWt)	1961	Three operators	Very minor radioactive release	Decommissioned
Fermi-1 USA (experimental breeder, 66 MWe)	1966	Nil	Nil	Repaired and restarted, then closed in 1972
Saint Laurent-A1, France (commercial, 480 MWe)	1969	Nil	Minor radiation release ?	Repaired (decomm. 1992)
Lucens, Switzerland (experimental, 7.5 MWe)	1969	Nil	Very minor radioactive release	Decommissioned
Three Mile Island-2, USA (commercial, 880 MWe)	1979	Nil	Minor short-term radiation dose (within ICRP limits) to public, delayed release of 2 x 10 ¹⁴ Bq of Kr-85	Clean-up programme complete, in monitored storage stage of decommissioning
Saint Laurent-A2, France (commercial, 450 MWe)	1980	Nil	Minor radiation release (8 x 10 ¹⁰ Bq)	Repaired (decomm. 1992)
Chernobyl-4, Ukraine (commercial, 950 MWe)	1986	47 staff and firefighters (32 immediate)	Major radiation release across E. Europe and Scandinavia (11 x 10 ¹⁸ Bq)	Entombed
Fukushima 1-3, Japan (commercial, 1959 MWe)	2011	Nil	Local contamination, extensive on site	Decommissioning / clean-up being planned

Major activity releases from reactors

Chernobyl

- Criticality excursion during tests
 - Explosive release of core contents
- Long-term releases during / after responses to control fire / criticality

• Windscale

- Core fire during graphite annealing
- Extensive releases of volatile components & water used for firefighting

Fukushima

- Core melt and fuel pond damage after loss of power following tsunami
- Responses ongoing

Chernobyl (1986): numbers

- Total release about 14 EBq: about 50% of this noble gases
- ✤ I-131 about 1.8 EBq
- Cs-137 about 85 PBq: widely distributed throughout Europe resulting in about 200,000 km² with fallout levels
 > 40 kBq / m²
- Sr-90 about 10 PBq, Pu isotopes about 3 PBq: most distributed within 100 km of the reactor (due to association with larger particles)
- Residual activity contained within the sarcophagus about 500 PBq

```
1 \text{ GBq} = 10^9 \text{ Bq}, 1 \text{ TBq} = 10^{12} \text{ Bq}, 1 \text{ PBq} = 10^{15} \text{ Bq}, 1 \text{ EBq} = 10^{18} \text{ Bq}
```

```
1 Ci = 3.7 × 10<sup>10</sup> Bq ~ 1 g Ra-226
```


The exclusion zone - <u>containing</u> <u>dispersed core</u>

FIG. 3.8. Surface ground deposition of ⁹⁰Sr [3.4].

FIG. 3.9. Areas (orange) where the surface ground deposition of ^{239,240}Pu exceeds 3.7 kBq/m² [3.4].

CEZ - Chernobyl exclusion zone

CEZ not related to Cs levels

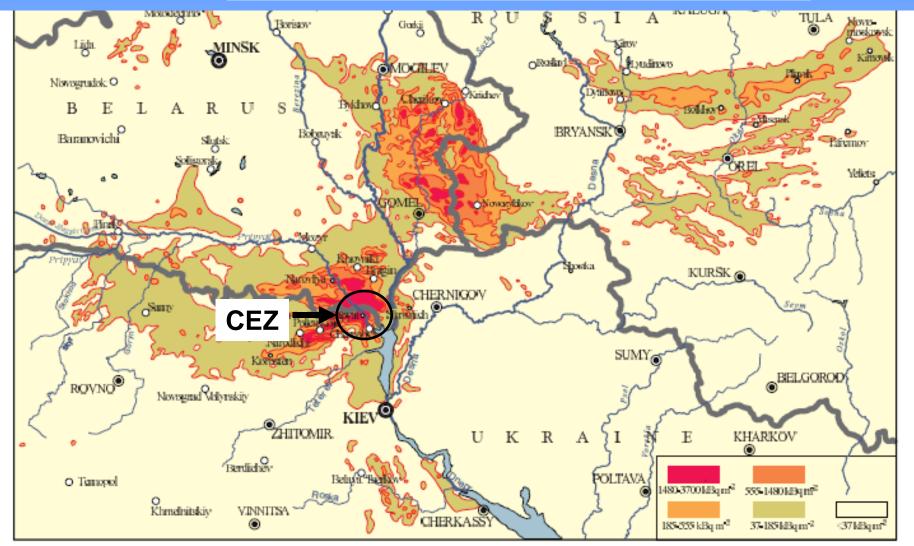
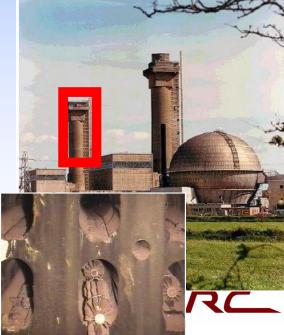
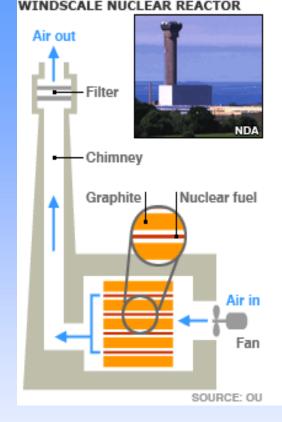


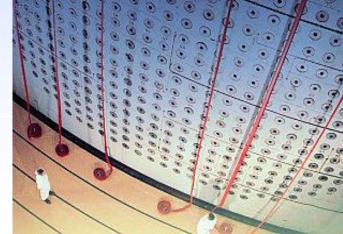
FIG. 3.6. Surface ground deposition of ¹³⁷Cs in areas of Belarus, the Russian Federation and Ukraine near the accident site [3.4].


Fukushima releases in context

- Reactors scrammed days before first venting of RN: greatly reduces shorter-lived radioactivity
- Predominantly gases / volatiles released, only minor concentrations of less labile RN: wind blowing mainly towards the sea
- Hydrogen explosions gave only local distribution of slightly contaminated material
- Local populations evacuated and iodine tablets issued
- Although melt-through not precluded, core / corium contained within reactor buildings

Fallout in Evacuated Zone has no similarity to Chernobyl: if anything more like that from Windscale reactor fire of 1957



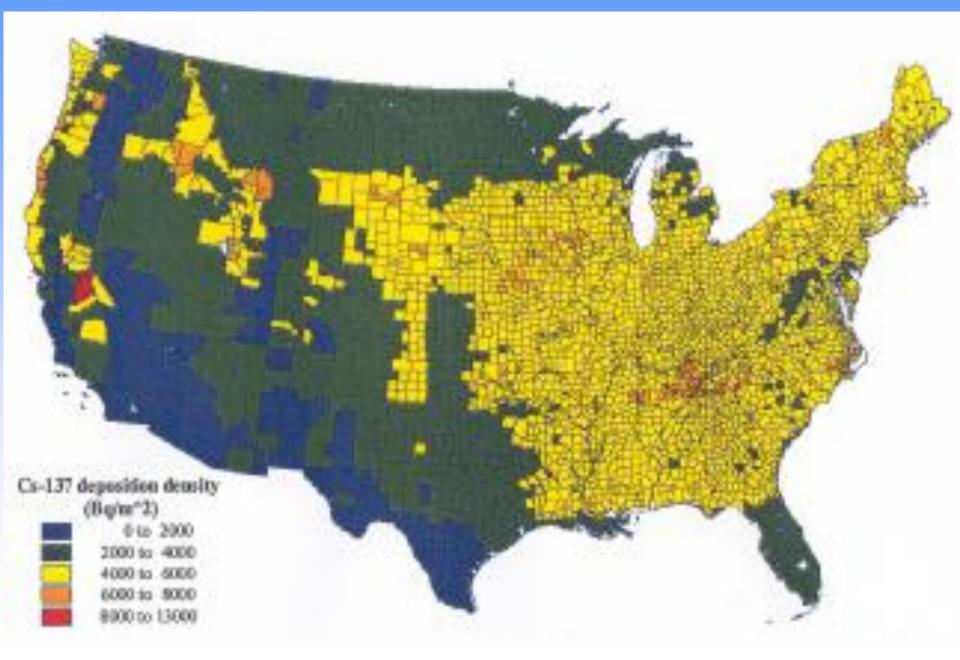


Windscale (1957)

- Activity releases lower (about 20 TBq Cs-137) but maybe more radiologically hazardous than Fukushima (Po-210)
- Initial attempt to conceal accident no evacuation of highest-exposed local populations during maximum I releases and complete secrecy regarding Po-210 (probable main hazard: possibly resulting thyroid cancers)
- Poor records of operator doses, especially during fire-fighting actions
- Attempts to flood core resulted in large volumes of contaminated water – initially discharged directly into local river
- INES rating of 5 in terms of both immediate and long-term environmental impact debatable due to Po releases - but certainly very much less longdistance impact than Chernobyl (INES 7)

Windscale: recovery

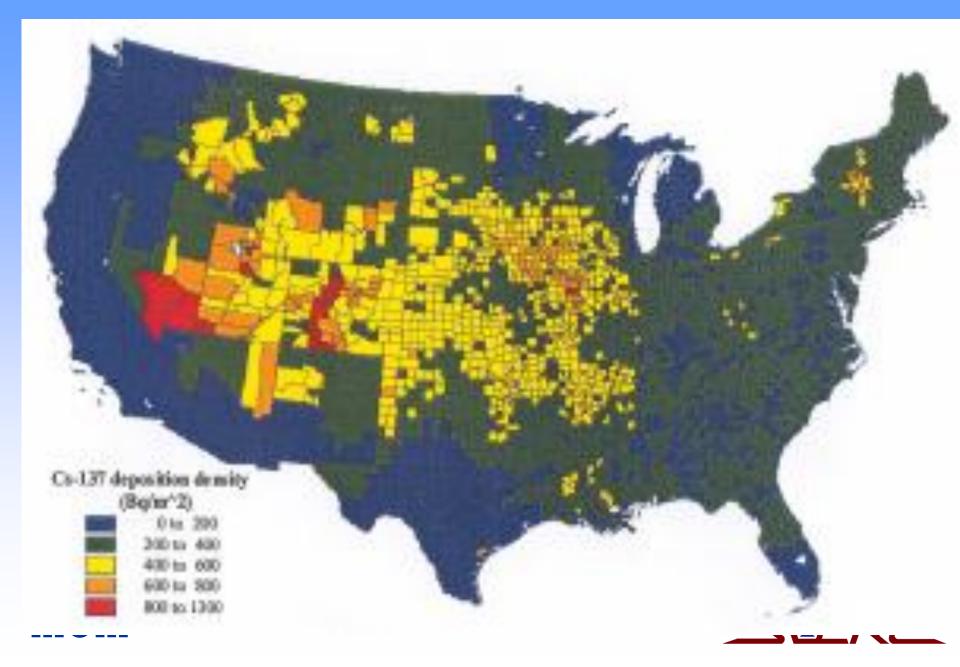
- Remediation focused on site no evacuation zone or external clean-up. Releases considerably reduced by filters.
- Off-site activities focused on restriction of dose - e.g. restriction of consumption of contaminated milk over an area of 500 km² (especially until decay of short-lived radioiodine)
- Main concern initially capture and treatment of water used to cool core
- Once stabilised, reactor core entombed; decommissioning not planned until 2037 (80 years after accident).
- Accident effectively forgotten: main area contaminated is major tourist attraction (Lake District).

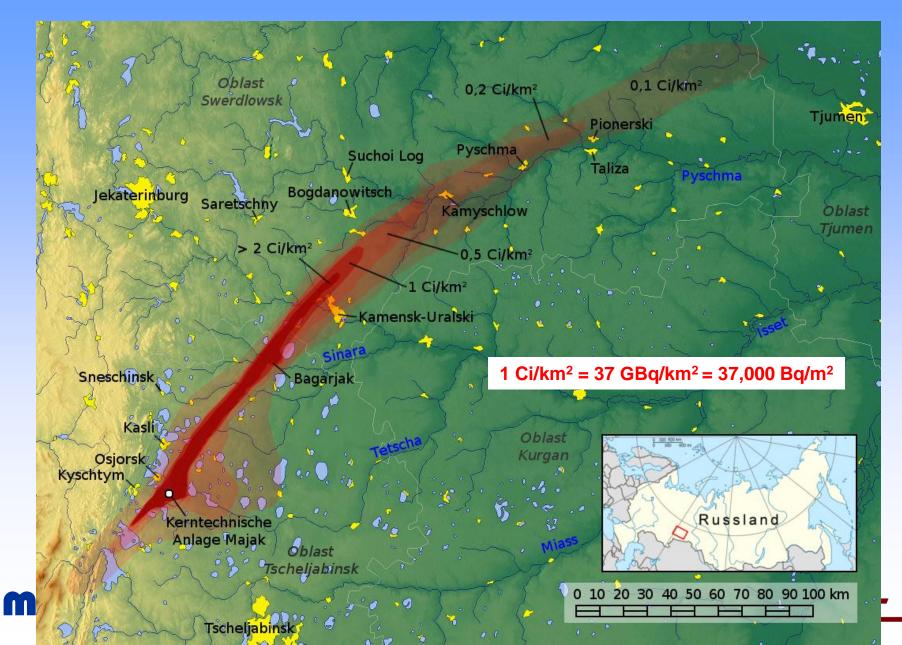

Other incidents and atmospheric discharges

- A major global source of radioactivity fallout was atmospheric nuclear bomb testing (1945-1980), which released in the order of 2 EBq of long-lived radionuclides. Regional fallout was also important around major test sites (e.g. Nevada Test Site, where over 1000 explosions took place)
- The "Kyshtym" explosion of a high-level liquid waste tank at the secret Mayak site (1957) distributed between 70 - 1900 PBq of radioactivity, leading to long-term contamination of an area of around 800 km² (mainly with Cs-137 and Sr-90)
- Wind distribution of contaminated sediment from Lake Karachay (also Mayak site, 1967) spread about 200 TBq of long-lived radioactivity over several thousand km²
- Hanford releases from reactors / separation plant before filters installed (1944-1947), including around 30 PBq of I-131 and many TBq of longer-lived fission products (Ru-103/106, Ce-144, Sr-90, Pu-239/240)

Global fallout

ATOMIC TEST EFFECTS IN THE NEVADA TEST SITE REGION


UNITED STATES ATOMIC ENERGY COMMISSION JANUARY 1955



NTS fallout

Kyshtym plume

Analogue team support?

SUERC / MCM experience (1)

- Measurement of Cs-134/-137 in the environment (from bomb fallout, Windscale, nuclear submarines, Chernobyl...)
- Airborne and surface gamma surveys in contaminated regions and around nuclear facilities: equipment development, intercalibration, use for emergency response
- Long-baseline studies of trace element mobilisation in the environment (analogues, ka timescale)
- Modelling of RN (Cs) movement in water, sediment / soil, rock and the biosphere
- Laboratory measurement of Cs interaction with soils, rocks, microbes, colloids,...
- In-situ (URL) testing of migration models / databases
 MCM

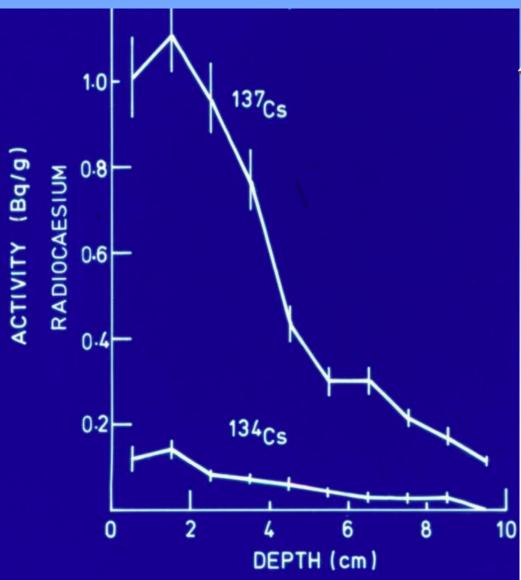
SUERC / MCM experience (2)

- Literature study and review of past radiocaesium contamination incidents
- Direct involvement in Fukushima contamination assessment and remediation planning
- Multi-decade involvement in the Japanese nuclear programme and close interaction with PNC / JNC / JAEA
- Supporting infrastucture for analysis of all other potentially required stable and radioactive isotopes
- Lead role in development and application of the JAEA advanced Knowledge Management System
- Communication of technical results to key stakeholders and teaching /training at all levels

Why so much experience in Scotland?

Radio-Cs in Scotland: mid '70s

Annual Cs releases to sea from the Windscale reprocessing plant similar to total releases from Fukushima Dai-ichi


Exciting area for young researchers

Glasgow University / SURRC (SUERC) internationally recognised in this area

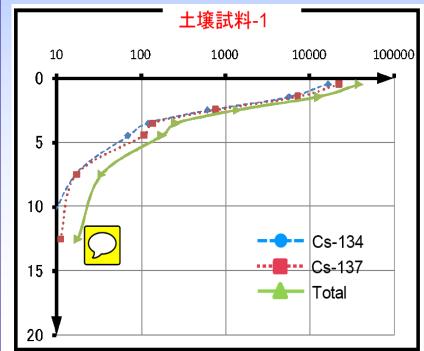
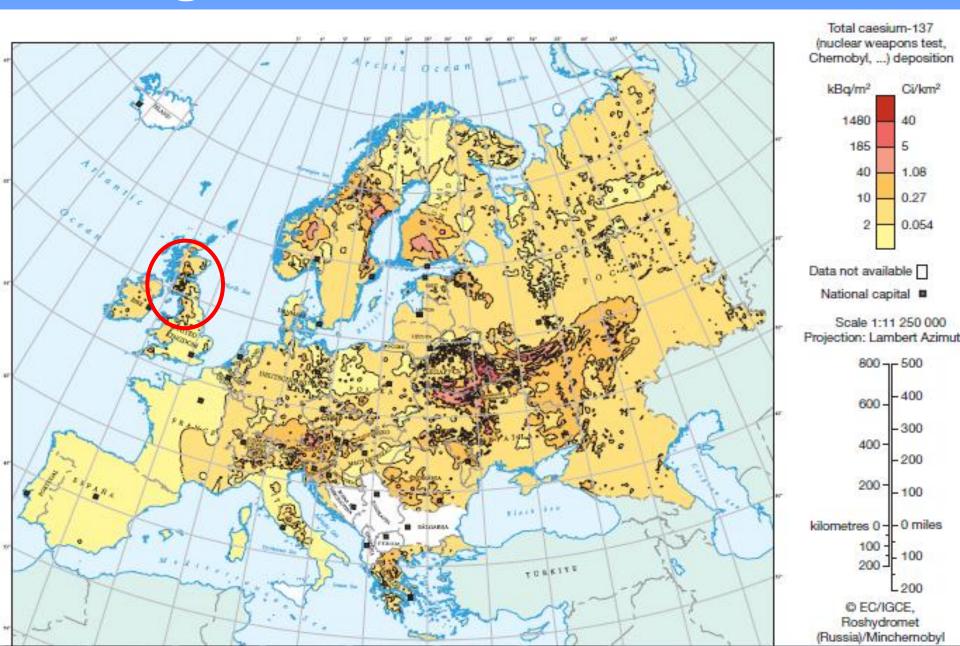
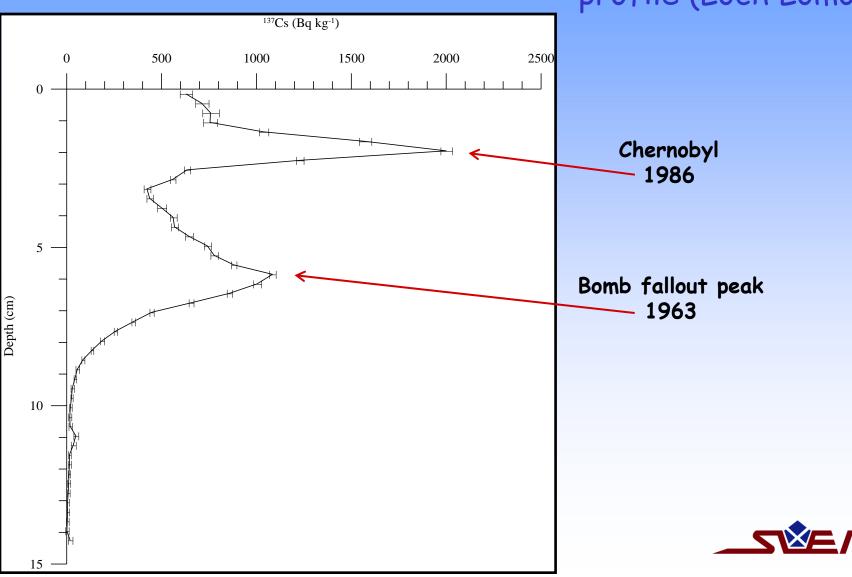


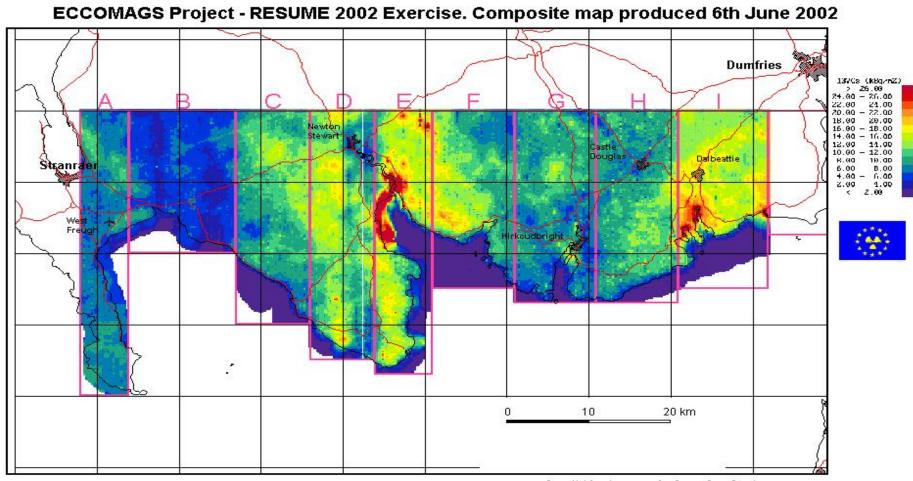
Fig. 1 Concentration of ¹³⁷Cs (pCi 1.-1) in UK coastal waters, May/ July 1972 (from Jefferies et al., 1973).


Radio-Cs in Scotland: mid '70s

- Radiocaesium profile in marine sediments very similar to Fukushima soil!
 - Models developed to simulate transfer from Windscale to the water and sediment of the Clyde Sea Area (analogue / digital)

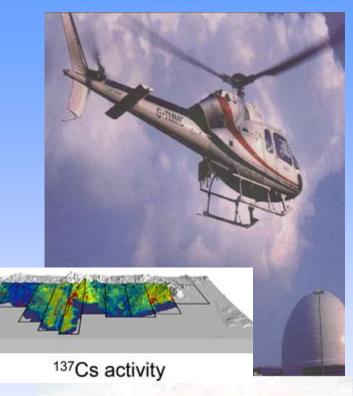


Large scale Cs-137 distribution


Radio-Cs in Scotland: now

Freshwater sediment profile (Loch Lomond)

Radio-Cs in Scotland: now


 Gamma-survey international intercalibration exercise in Scotland

Geographic information reproduced from Ordnance Survey Strategi data. (c) Crown Copyright Ordnance Survey 2000. An EDIXA Digimap (JISC supplied service.

Aerial and Vehicular Gamma Survey

- Unique capability for conducting airborne gamma spectrometry (AGS) and vehicular radiometric surveys
- More than twenty environmental surveys have been completed in the UK and overseas including studies of the majority of UK nuclear sites
- Research techniques and calibration procedures including Monte Carlo simulation (20+ years)
- SUERC has been at the forefront of establishing European co-operation and coordinating method development at international level
- Gamma-ray spectrometer calibration pads



Sampling methods / analysis

- Experience in all aspects of environmental sampling, including concentration methods for low concentrations in solution and coring in terrestrial and underwater settings.
- Analytical capacity to determine key supporting information such as sedimentation rates

Communication!

- There is little doubt that fear of radiation will probably cause more health effects than the radiation itself: this is a real effect and must be addressed via improved communication
- There has been a massive loss in trust and credibility: this must be regained by government, government agencies and all involved technical groups before meaningful dialogue can be established
- Recovery is possible only when communities understand the future cleanup of the environment - both natural and via remediation: communication should be a focus for all work carried out

Collaboration options

How can we best support recovery of the Fukushima region?

